5.6: Integrals Involving Exponential and Logarithmic Functions

Learning Objectives

Exponential and logarithmic functions are used to model population growth, cell growth, and financial growth, as well as depreciation, radioactive decay, and resource consumption, to name only a few applications. In this section, we explore integration involving exponential and logarithmic functions.

Integrals of Exponential Functions

The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential function, \(y=e^x\), is its own derivative and its own integral.

Rule: Integrals of Exponential Functions

Exponential functions can be integrated using the following formulas.

Example \(\PageIndex\): Finding an Antiderivative of an Exponential Function

Find the antiderivative of the exponential function \(e^\).

Solution

Use substitution, setting \(u=−x,\) and then \(du=−1\,dx\). Multiply the \(du\) equation by \(−1\), so you now have \(−du=\,dx\). Then,

Exercise \(\PageIndex\)

Find the antiderivative of the function using substitution: \(x^2e^\).

Hint

Let \(u\) equal the exponent on \(e\).

Answer

A common mistake when dealing with exponential expressions is treating the exponent on \(e\) the same way we treat exponents in polynomial expressions. We cannot use the power rule for the exponent on \(e\). This can be especially confusing when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we should always double-check to make sure we’re using the right rules for the functions we’re integrating.

Example \(\PageIndex\): Square Root of an Exponential Function

Find the antiderivative of the exponential function \(e^x\sqrt\).

Solution

First rewrite the problem using a rational exponent:

Using substitution, choose \(u=1+e^x\). Then, \(du=e^x\,dx\). We have

A graph of the function f(x) = e^x * sqrt(1 + e^x), which is an increasing concave up curve, over [-3, 1]. It begins close to the x axis in quadrant two, crosses the y axis at (0, sqrt(2)), and continues to increase rapidly.

Exercise \(\PageIndex\)

Find the antiderivative of \(e^x(3e^x−2)^2\).

Hint

Answer

Example \(\PageIndex\): Using Substitution with an Exponential Function

Use substitution to evaluate the indefinite integral \(\displaystyle ∫3x^2e^\,dx.\)

Solution

Here we choose to let \(u\) equal the expression in the exponent on \(e\). Let \(u=2x^3\) and \(du=6x^2\,dx\). Again, \(du\) is off by a constant multiplier; the original function contains a factor of \(3x^2,\) not \(6x^2\). Multiply both sides of the equation by \(\dfrac\) so that the integrand in \(u\) equals the integrand in \(x\). Thus,

Integrate the expression in \(u\) and then substitute the original expression in \(x\) back into the \(u\)-integral:

Exercise \(\PageIndex\)

Evaluate the indefinite integral \(\displaystyle ∫2x^3e^\,dx\).

Hint

Answer

As mentioned at the beginning of this section, exponential functions are used in many real-life applications. The number \(e\) is often associated with compounded or accelerating growth, as we have seen in earlier sections about the derivative. Although the derivative represents a rate of change or a growth rate, the integral represents the total change or the total growth. Let’s look at an example in which integration of an exponential function solves a common business application.

A price–demand function tells us the relationship between the quantity of a product demanded and the price of the product. In general, price decreases as quantity demanded increases. The marginal price–demand function is the derivative of the price–demand function and it tells us how fast the price changes at a given level of production. These functions are used in business to determine the price–elasticity of demand, and to help companies determine whether changing production levels would be profitable.

Example \(\PageIndex\): Finding a Price–Demand Equation

Find the price–demand equation for a particular brand of toothpaste at a supermarket chain when the demand is \(50\) tubes per week at $2.35 per tube, given that the marginal price—demand function, \(p′(x),\) for \(x\) number of tubes per week, is given as

If the supermarket chain sells \(100\) tubes per week, what price should it set?

Solution

To find the price–demand equation, integrate the marginal price–demand function. First find the antiderivative, then look at the particulars. Thus,

Using substitution, let \(u=−0.01x\) and \(du=−0.01\,dx\). Then, divide both sides of the \(du\) equation by \(−0.01\). This gives

The next step is to solve for \(C\). We know that when the price is $2.35 per tube, the demand is \(50\) tubes per week. This means

Now, just solve for \(C\):

If the supermarket sells \(100\) tubes of toothpaste per week, the price would be

The supermarket should charge $1.99 per tube if it is selling \(100\) tubes per week.

Example \(\PageIndex\): Evaluating a Definite Integral Involving an Exponential Function

Evaluate the definite integral \(\displaystyle ∫^2_1e^\,dx.\)

Solution

Again, substitution is the method to use. Let \(u=1−x,\) so \(\,du=−1\,dx\) or \(−\,du=\,dx\). Then \(\displaystyle ∫e^\,dx=−∫e^u\,du.\)

Next, change the limits of integration. Using the equation \(u=1−x\), we have:

\[\textx = 1, \quad u=1−(1)=0, \nonumber \]

\[\textx = 2, \quad u=1−(2)=−1. \nonumber \]

The integral then becomes

See Figure \(\PageIndex\).

A graph of the function f(x) = e^(1-x) over [0, 3]. It crosses the y axis at (0, e) as a decreasing concave up curve and symptotically approaches 0 as x goes to infinity.

Exercise \(\PageIndex\)

Evaluate \(\displaystyle ∫^2_0e^\,dx.\)

Hint

Answer

Example \(\PageIndex\): Growth of Bacteria in a Culture

Suppose the rate of growth of bacteria in a Petri dish is given by \(q(t)=3^t\), where \(t\) is given in hours and \(q(t)\) is given in thousands of bacteria per hour. If a culture starts with \(10,000\) bacteria, find a function \(Q(t)\) that gives the number of bacteria in the Petri dish at any time \(t\). How many bacteria are in the dish after \(2\) hours?

Solution

Then, at \(t=0\) we have \(Q(0)=10=\dfrac<\ln 3>+C,\) so \(C≈9.090\) and we get

At time \(t=2\), we have

After 2 hours, there are 17,282 bacteria in the dish.

Exercise \(\PageIndex\)

From Example, suppose the bacteria grow at a rate of \(q(t)=2^t\). Assume the culture still starts with \(10,000\) bacteria. Find \(Q(t)\). How many bacteria are in the dish after \(3\) hours?

Hint

Use the procedure from Example \(\PageIndex\) to solve the problem

Answer

So there are \(20,099\) bacteria in the dish after \(3\) hours.

Example \(\PageIndex\): Fruit Fly Population Growth

Suppose a population of fruit flies increases at a rate of \(g(t)=2e^\), in flies per day. If the initial population of fruit flies is \(100\) flies, how many flies are in the population after \(10\) days?

Solution

Let \(G(t)\) represent the number of flies in the population at time \(t\). Applying the net change theorem, we have

There are \(122\) flies in the population after \(10\) days.

Exercise \(\PageIndex\)

Suppose the rate of growth of the fly population is given by \(g(t)=e^,\) and the initial fly population is \(100\) flies. How many flies are in the population after \(15\) days?

Hint

Use the process from Example \(\PageIndex\) to solve the problem.

Answer

There are \(116\) flies.

Example \(\PageIndex\): Evaluating a Definite Integral Using Substitution

Evaluate the definite integral using substitution: \[∫^2_1\dfrac>\,dx.\nonumber \]

Solution

This problem requires some rewriting to simplify applying the properties. First, rewrite the exponent on e as a power of \(x\), then bring the \(x^2\) in the denominator up to the numerator using a negative exponent. We have

Let \(u=x^,\) the exponent on \(e\). Then

Bringing the negative sign outside the integral sign, the problem now reads

Next, change the limits of integration:

Notice that now the limits begin with the larger number, meaning we can multiply by \(−1\) and interchange the limits. Thus,

Exercise \(\PageIndex\)

Evaluate the definite integral using substitution: \[∫^2_1\dfrace^>\,dx.\nonumber \]

Hint

Answer

Integrals Involving Logarithmic Functions

Integrating functions of the form \(f(x)=x^\) result in the absolute value of the natural log function, as shown in the following rule. Integral formulas for other logarithmic functions, such as \(f(x)=\ln x\) and \(f(x)=\log_a x\), are also included in the rule.

Rule: Integration Formulas Involving Logarithmic Functions

The following formulas can be used to evaluate integrals involving logarithmic functions.

\[\begin ∫x^\,dx &=\ln |x|+C \\[4pt] ∫\ln x\,\,dx &= x\ln x−x+C =x (\ln x−1)+C \\[4pt] ∫\log_a x\,dx &=\dfrac<\ln a>(\ln x−1)+C \end\]

Example \(\PageIndex\): Finding an Antiderivative Involving \(\ln x\)

Find the antiderivative of the function \(\dfrac. \)

Solution

First factor the \(3\) outside the integral symbol. Then use the \(u^\) rule. Thus,

See Figure \(\PageIndex\).

A graph of the function f(x) = 3 / (x – 10). There is an asymptote at x=10. The first segment is a decreasing concave down curve that approaches 0 as x goes to negative infinity and approaches negative infinity as x <a href=goes to 10. The second segment is a decreasing concave up curve that approaches infinity as x goes to 10 and approaches 0 as x approaches infinity." />

Exercise \(\PageIndex\)

Find the antiderivative of \(\dfrac.\)

Hint

Follow the pattern from Example \(\PageIndex\) to solve the problem.

Answer

\(\displaystyle \int \dfrac\,dx = \ln |x+2|+C\)

Example \(\PageIndex\): Finding an Antiderivative of a Rational Function

Find the antiderivative of \(\dfrac. \)

Solution

This can be rewritten as \(\displaystyle ∫(2x^3+3x)(x^4+3x^2)^\,dx.\) Use substitution.

Let \(u=x^4+3x^2\), then \(du=(4x^3+6x)\,dx.\) Alter \(du\) by factoring out the \(2\). Thus,

Rewrite the integrand in \(u\):

Example \(\PageIndex\): Finding an Antiderivative of a Logarithmic Function

Find the antiderivative of the log function \(\log_2 x.\)

Solution

Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based on this format, we have

Exercise \(\PageIndex\)

Find the antiderivative of \(\log_3 x\).

Follow Example \(\PageIndex\) and refer to the rule on integration formulas involving logarithmic functions.

Answer

\(\displaystyle ∫\log_3 x\,dx=\dfrac<\ln 3>(\ln x−1)+C\)

Example \(\PageIndex\) is a definite integral of a trigonometric function. With trigonometric functions, we often have to apply a trigonometric property or an identity before we can move forward. Finding the right form of the integrand is usually the key to a smooth integration.

Example \(\PageIndex\): Evaluating a Definite Integral

Evaluate the definite integral \[∫^_0\dfrac\,dx.\nonumber \]

Solution

We need substitution to evaluate this problem. Let \(u=1+\cos x\) so \(du=−\sin x\,\,dx.\)

Rewrite the integral in terms of \(u\), changing the limits of integration as well. Thus,

Key Concepts

Key Equations

\[∫\ln x\,dx=x\ln x−x+C=x(\ln x−1)+C \nonumber \]

\[∫\log_a x\,dx=\dfrac<\ln a>(\ln x−1)+C \nonumber \]

This page titled 5.6: Integrals Involving Exponential and Logarithmic Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gilbert Strang & Edwin “Jed” Herman (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

  1. Back to top

Recommended articles

  1. Article type Section or Page Author OpenStax License CC BY-NC-SA License Version 4.0 OER program or Publisher OpenStax Show Page TOC no Stage Review
  2. Tags
    1. author@Edwin “Jed” Herman
    2. author@Gilbert Strang
    3. Integrals of Exponential Functions
    4. Integration Formulas Involving Logarithmic Functions
    5. source@https://openstax.org/details/books/calculus-volume-1